
 Subversion

➢ http://subversion.tigris.org/

➢ Subversion is a free/open-source version control system

➢ It stores a tree of files in a central repository. The repository
is much like a database server, except that it does not use
SQL to access the data. Instead, it uses its own command
syntax.

➢ Subversion can access its repository across networks, which
makes it a good choice for free/open source projects.

Subversion Features

➢ Directory versioning

➢ True version history

➢ Atomic commits

➢ Versioned metadata

➢ Choice of network layers

➢ Consistent data handling

➢ Efficient branching and tagging

➢ Hackability

Subversion Requirements

➢ APR (the Apache Portable Runtime library)

➢ Apache HTTP Server (optional)
 svnserve: standalone server

➢ Berkeley DB (optional, but strongly recommended)

➢ Subversion

Revisions

➢ Subversion's revision numbers apply to entire trees, not individual files

➢ A new Subversion repository begins its life at revision zero and each successive
commit increases the revision number by one

➢ Several commands use revision as an argument
 svn –revision

➢ Revision Keywords:
 HEAD: The latest revision in the repository.
 BASE: The “pristine” revision of an item in a working copy.
 COMMITTED: The last revision in which an item changed before (or at)

BASE.
 PREV: The revision just before the last revision in which an item changed

(Technically, COMMITTED – 1.)

➢ Revision dates:
 Enclosed in braces "{}"
 In order of: year month day hour minute second but not all fields required

Repository operations

➢ Recommended directory structure for each project directory is to
have the following subdirectories:
 trunk, branches, tags

➢ Checkout creates working directory under current directory
svn co svn:/path_to_repository/project/trunk my_working_copy

➢ Add new files edit and save my_filename.c
svn add my_filename.c

➢ Commit changes specific files or entire tree below current directory
(NOTE: Must be in directory where file is located)

svn commit my_filename.c -m 'Fixed the foo bug'
svn commit -m 'Fixed the foo bug'
svn commit --non-recursive -m 'Fixed the foo bug'

➢ Update working copy from repository
svn update
svn update -r revision_number

Repository History

➢ View the log of changes according to your working copy
(must update to match repository)

svn log

➢ View changes to a file
svn diff

➢ View file at a particular revision
svn cat

➢ View directory listing at a particular revision
svn ls

➢ View history of a path in the repository
svnlook history

➢ View differences between revisions
svnlook diff

Project Branches

➢ Reasons
 Freeze a release for only fixes, no new features
 Parallel code path (ie. GPL and commercial)

➢ Copy trunk to a branch
cd /working_copy_of_project
svn copy svn:/path_to_repository/project/trunk \
svn:/path_to_repository/project/branches/Rev-1.5 \
-m 'Freezing Rev. 1.5'

➢ To work on branch, create a working directory under current directory
svn co svn:/path_to_repository/project/branches/Rev-1.5 my_Rev15

➢ Perform repository operations just like in trunk

Merging branches

➢ Reasons
 Fixes in branch should be included in trunk
 Branch is used for major change that is ultimately to be part of trunk

➢ View differences between files in trunk and branch
svn diff reva:revb

➢ Merge changes from trunk into working copy of branch
svn merge reva:revb svn:path_to_repository/project/trunk/my_filename.c

➢ Commit changes to branch
NOTE: CWD = directory of branch working copy
svn commit -m 'Merged changes from trunk'

Administration

➢ Create repository
svnadmin create

➢ Recover from DB errors
svnadmin recover

➢ GOTCHA: Multiple users are running locally or sharing the standalone
server, permissions may cause DB problems. The workaround is to
frontend svn or svnserve command with shell script to set umask.

#!/bin/sh
umask 002
svn.orig

➢ Backups
 Berkeley DB: Sleepycat describes procedure for full backup
 Incremental backups

svnadmin hotcopy
hot-backup.py: Python wrapper for svnadmin hotcopy

Subversion Server

➢ May use Apache if wide ranging project or fine tuned access required

➢ Standalone server sufficient for smaller projects
svnserve -d -r /path_to_repository (-r argument allows users to

shorten svn command)

➢ User file specified in svnserve.conf
[general]
password-db = our_pw_file

➢ Users defined in password file (NOTE: Unencryped text)
[users]
harry = foopassword
sally = barpassword
me:

➢ Username followed by ":" allows access without password, but assigns
username to revision commits

Command overview

➢ svnadmin
➢ create
➢ recover
➢ help

➢ svn
➢ import
➢ checkout (co)
➢ add, copy, merge, update
➢ commit
➢ list (ls), log
➢ help

➢ svnlook
➢ cat, diff
➢ history
➢ help

