

How we made
a Failed COTS solution Useful

with FOSS

Agenda

 Background

 Personal Disclaimer

 COTS vs. FOSS

 Product Failure

 Official Approach – Worked with vendor

 Good Customer Approach – Help the vendor

 Fed-up Customer Approach – Replace Software

 Enhance Solution

 Final Thoughts

Background

 On contract to a US Agency as the Senior
InfoSec Engineer for the CISO to evaluate, test,
and design security solutions

 Among other things, the team is responsible for
central-collection of ~25million security events
per day from over 8000 devices, and analysis
of this data

Personal Disclaimer

 Support FOSS but not in favor of a better
COTS solution (if one exists)

 3-year story, not a how-to
 Not vendor specific – COTS NIDS

COTS Incentives

 Update cycle (patches, signatures, etc)
 Supported
 Integrated technologies
 It Looks slick (when it works)
 Someone to blame
 “We are a [insert name-brand here] shop”
 “I just don't trust that freeware!”

FOSS Incentives

 Known and working
 No license or PO overhead
 Free?
 Adaptable to any environment
 Forums, Wikis and Message Boards, oh my
 COTS = tied hands

 Can't make changes per license or closed source
 Customer Support - The Golden Handcuffs

 Unattributed quote from government IT staff: “I
would rather implement a COTS solution of
unknown quality but have someone to blame
then to put in FOSS software that we believe
will work, but where I will have no one to turn to
if there are problems.”

The Environment – Jun. 2004

 Over 90 offices in approx. 70 countries
 Highly-latent network links, fail-over to VSAT
 ~3/4 of offices have a local Internet gateway
 Project to deploy approx. 100 COTS NIDS

Appliances mostly model 4215
 This includes replacement of original 5 4210s

Rude Awakening – 6 Months In

 Many sensors not reporting in
 Little visibility in many locations
 Mgmt system required frequent rebuilds
 Mgmt system clunky and buggy
 Eventually tasked to define key issues

 100 devices in over 90 offices all over the world
 All installed in average server rooms

Problems - Hardware

 Poor design
 Unreachable systems

were costly in time
 Long replacement

cycle (slow
international ship)

 Recovered drive is
useless

Poor Design - Close-Up

Problems – Mgmt Overhead

 Managing the management solution
 Sensitive
 Rebuilt DB 4 times in 18 months
 Frequent Errors (i.e. Java Exceptions)

 Slow management tasks
 Version query took 45 minutes
 Updates took many hours or days

Problems - Performance

 Advertised performance (80mb/s)
 Marketing numbers?
 No port bonding

 Our test revealed ~92% packet-loss at the NIC
when burdened with 77mb/s of traffic

 Of the < 8% that got through, over ½ was
dropped by the kernel

Problem - Failed Services

 NTP
 Not compatible with “ntp keys”
 Service ntpd frequently dies
 NIDS time off by minutes/hours

 Sensing interface “downs” itself
 IDS software frequently dies

Problem - No updates

 Timeout due to high-latent links
 No notification for failed update
 Queries took 45 minutes
 Approximately 10% never would update

Problems - Signatures

 Signature Updates impossible
 Over 10% timed-out due to latency
 No mitigation for slow links

 Limited signature tuning capability
 No visible detection logic (on many sigs)
 High FP rate (updates revived tuned sigs)
 Little visibility into vendor-supplied rules
 Very limited on custom signatures

Official Approach

Tell Vendor to Fix Problem

Worked With Vendor

 Opened lots of customer support cases
 Updated sales team (e.g. Sales Engineer)

 On-site visits and many conference calls
 SE and entire Sales Team was no help at all

 Brought issues to product manager (con call)
 Bought new hardware for critical sites, model

4240

COTS NIDS Reality

 RMAed units, but we are blind for weeks
 Other reports of failure in Federal Agencies
 Usage & functionality problems were systemic
 Each next release didn't fix big issues
 Our new hardware investment had problems
 A full-scale replacement was not budgeted

Good Customer Approach

Encourage Product Work

Managed the NIDS

 Got r00t!
 Implemented shared keys
 Studied underlying system

Replaced Signature Updates

 Latency is a fact, need better solution
 Wrote script (i.e. wrapped wget) to download

latest sig version centrally
 Synced latest version to NIDS local directory
 Configured NIDS to update from local

Continued Work with Vendor

 Opened more customer support cases
 Stayed in contact with sales team

 More on-site visits and conference calls

 Met with vendor's security product panager
 No hope in site
 Chastised for patching our COTS NIDS using ssh

Implemented Monitoring

 Used Henrik Storner's
Hobbitmon to monitor
network-based
services

 More visibility can be
a scary thing

 Monitored icmp then
ssh, then https, then
certificate checks

More Visibility = Horror

 Monitoring demonstrated larger problem
 About 30% of the COTS NIDS were not functioning
 Some were in half hung state
 Others had down sensing interfaces
 Services were failing at a high frequency
 Time varied greatly

 Hobbit effectively measured up-status
 Hobbit allowed us to report on outages

COTS NIDS – Half Hung State

Replacement Options – ~3 Years

 Stay with existing vendor
 Invest in a new NIDS vendor
 Implement our own solution

Fed-up Customer Approach

Replace Vendor's Software
Implement our own Known-

Working Solution

Approval

 Got approval to design a new solution using
Free and Open Source Software and an in-
house implementation

 Got approval to use existing hardware platform
(point of no return)

Project Definition – Mid-Aug. 2006

 Time-frame
 7 Weeks until forced upgrade
 Had 7 Weeks to:

 Design solution
 Build solution
 Test solution
 Implement solution

 Prior commitments

 Initial goal: Replace existing functionality 1-for-1
 Leverage already-installed hardware

Architecture Challenges

 Six variations of NIDS
 Three models of appliance (4215,4240,IDSM2)
 Two base OS/Vers (4.x-RH7.3,5.x-busybox)

 Three naming schemes for interfaces
 Many quirks including:

 Varying libraries
 Diverse filesystem layout
 Inconsistent software packages
 Different environment (i.e. PATH)

Limitations of Platform

 Ver 4.x - modified Redhat 7.3
 Specialized Kernel
 Few tools and libs

 Ver 5.x - Busybox
 Newer specialized kernel
 Much fewer tools and libs
 At boot, flash writes to ramdisk (no persistent FS)

Limitations of Hardware

 4215s (mostly running 4.x)
 Frequent hard drive failures
 Very low net capacity (92% dropped packets etc)

 4240s (mostly running 5.x)
 Limited-sized CF disk (largest part. was 512 mb)

only, no larger data store
 Faster net but not great

Solution Replacement - Phase 1

Phase 1 Goal

To maintain continuity of central management for
the NIDS, a more complex management
architecture was designed to obfuscate subtle
differences in the six different platforms.

The primary goal was to keep the analysts
watching packets and not configuring
snort/systems.

Phase 1 Objectives

 Enhanced Monitoring (internals)
 System Management
 Signature Management
 Snort Management
 Log Management
 Implement/Cut-over and not miss events

Phase1 Mindmap

Monitoring

 Continue using Hobbitmon
 Built custom hobbit-client packages
 Monitor internals including

 Snort service
 Ntp service
 Sensing interface status
 Resources: disks, CPU, memory
 Syslog

System Management

 Used rsync to sync system files
 Start scripts
 ntp.conf
 Host keys

Signature Management

 Sync central sigs to VRT with oinkmaster
 Integrate custom rules as well
 Sync to NIDS with rsync (used bwlimit)
 Aside: Snort rules

Snort Mgmt - NIDS.conf

 Central NIDS.conf
 Csv containing configuration parameters
 Mgmt and sensing Ips
 Interfaces and system-name
 BPF option
 Larger components of snort.conf

#01NAME_INT,02MGMT_IP,03NAME,04REGION,05MODEL,06OS,07HOME_NETS,08DEF
AULT_LOCAL_VARS.include,09DEFAULT_ENT_VARS.include,10DEFAULT_DECODERS.in
clude,11DEFAULT_PREPROCESSORS.include,12CXXLOGS,13DEFAULT_RULES.include,
14DEFAULT_CONFIG_STATEMENTS.include,15ROLE,16NOTES,17FILTER,18BPF

Snort Mgmt - snort.env

 snort.env (library function)
 Parses NIDS.conf on system
 Assigns variables to csv fields from NIDS.conf

DEB_LOGS="/var/log/ns/snort/"
DEB_BIN="/usr/bin/"
C40_LOGS="/usr/cids/idsRoot/var/snort/"
C40_BIN="/usr/local/sbin"
C50_LOGS="/usr/cids/idsRoot/var/snort/"
C50_BIN="/usr/local/bin"

SN_RULES="`echo $instance | awk -F, '{ print $13 }'`"
SN_CONFIG="`echo $instance | awk -F, '{ print $14 }'`"
ROLE="`echo $instance | awk -F, '{ print $15 }'`"
NOTES="`echo $instance | awk -F, '{ print $16 }'`"
SN_FILTER="`echo $instance | awk -F, '{ print $17 }'`"
SN_BPF="$NIDS_SNORT_DIR/confs/`grep $NAMEOLD $NIDSCONF | awk -F, '{ print $18 }'`"

Snort Mgmt – Snort init

 snort.init
 Sources snort.env
 Uses values attained from NIDS.conf
 Assembles snort.conf at runtime from template

Prep_Config(){
cp $TEMPLATE $CONF
$PERL -pi -e "s/HOMENETS/$SN_HOME_NETS/;" $CONF
$PERL -pi -e "s/DEFAULT_LOCAL_VARS.include/$SN_LOCAL_VARS/;" $CONF
$PERL -pi -e "s/DEFAULT_ENT_VARS.include/$SN_ENT_VARS/;" $CONF
$PERL -pi -e "s/DEFAULT_DECODERS.include/$SN_DECODERS/;" $CONF
$PERL -pi -e "s/DEFAULT_PRE_PROCESSORS.include/$SN_PREPROCESSORS/;" $CONF
$PERL -pi -e "s/ALERTFACILITY/$FACILITY/;" $CONF
rm $LOGDIR; ln -s $SN_LOGGING_DIR $LOGDIR
$PERL -pi -e "s/HOST/$NAME/;" $CONF
$PERL -pi -e "s/DEFAULT_CONFIG_STATEMENTS.include/$SN_CONFIG/;" $CONF
$PERL -pi -e "s/DEFAULT_RULES.include/$SN_RULES/;" $CONF
[! -d $BINDIR] && ln -s $BINDIR $NIDS_SNORT_DIR/bin
}

Log Management

 Syslog to central syslog-ng server
 Syslog-ng server stores copy and redirects to

SIM
 Analysts use shell scripts to parse logs in store
 Analysts use SIM to look at trends and

correlations

Implementation

 Implementation scripts
 Parallel sensing for a time

 COTS IDS and snort running simultaneously
 Analysts use COTS, but validate snort

 Disable COTS IDS
 On S-Day, analysts start using snort only
 Disable IDS software on COTS appliance

 Narrowly missed deadline

Enhancement - Phase 2

Phase 2 Begins – Dec. 2006

 Evaluate hardware replacement
 Call for reinforcements - hire help
 NIDS becomes NS (Network Sensor)

Replace Hardware

 Determine
approximate specs

 Market survey for
custom appliances

 Got demo boxes from
MBX (Advertised in
LJ every month)

Hardware Evaluation
Environment

 Structured one month testing
 Built testing environment in lab
 Used live capture files
 Extensive network tests

 100T
 1000T
 Bonded
 Spanned
 Tapped

Evaluation Parameters

 Tested two versions of legacy hardware
 Tested new hardware with two OS (debian and

gentoo)
 Tested multiple quad-ethernet cards
 Built custom image (Debian etch)

Sample Evaluation Results

Snort received 21704004 packets
Analyzed: 17774793(81.896%)
Dropped: 3929211(18.104%)

Snort received 21704004 packets
Analyzed: 17754109(81.801%)
Dropped: 3949895(18.199%)

Snort received 21704004 packets
Analyzed: 17329402(79.844%)
Dropped: 4374602(20.156%)

COTS (4240)

Snort received 13540634 packets
Analyzed: 515204(3.805%)
Dropped: 13025430(96.195%)

Snort received 13547781 packets
Analyzed: 524820(3.874%)
Dropped: 13022961(96.126%)

Snort received 13547505 packets
Analyzed: 534193(3.943%)
Dropped: 13013312(96.057%)

COTS (4215)

Snort received 21703720 packets
Analyzed: 21663726(99.816%)
Dropped: 39994(0.184%)

Snort received 21703824 packets
Analyzed: 21679190(99.886%)
Dropped: 24634(0.114%)

Snort received 21704005 packets
Analyzed: 21670880(99.847%)
Dropped: 33125(0.153%)

MBX (Debian)

Run 3Run 2Run 1

The 4215 processes only 8.61% of the entire amount of packets
sent, while the MBX machine processes 98.55% of the entire
amount of packets sent.
The 4240 and the MBX saw about the same amount of packets but
snort on the 4240 dropped approximately 19% of the packets.

MBX Hardware

 All name brand
components

 Option for high-end
options

 Well designed/cooled
 Upgradeable
 Inexpensive in

comparison

MBX vs. COTS NIDS

Model 4240

Pulled Trigger Feb. 2007

 Tested new hardware in place of existing
 Fantastic results
 Many additional features e.g.

 Port bonding (eases Tap input/Increases
bandwidth)

 Easily replaceable/upgradeable hardware
 Highly reliable hardware

 Ordered replacements for all NIDS 100+
 Ordered separate build and test systems

ISSO Appliance Implementation

 Sever ties with COTS vendor
 Launch the “ISSO Appliance”

Debian Build Process

 Build with fai (fully-automated installer) via PXE
 Documented process for an assembly-line
 Deployed APT-Proxy for patches
 Deployed APT-Repository for custom debs
 Appliance-ish install

 Labeled NICS for easy change
 Include color “Dell Like” instructions for local staff

Change Mindset to NS

 Network Sensor, more than just a NIDS
 Create framework for modularity on NS
 Flow data collection
 URL parsing
 Ad-hoc packet capture
 Specialized packet-capture (i.e. dns,http)
 Regional syslog collection*

Custom APT-Repo Packages

 Argus
 URLSnarf
 Snort
 SSH-Confs
 System-Confs
 Ad-Hoc

Next Steps

 Finish deployment of MBX boxes
 Develop and integrate VPN for mgmt traffic
 Automate deb package creation process
 Consider logging improvements

Final Thoughts

 Due diligence – demand quality from vendors
 Carefully consider your position as a customer
 FOSS is powerful and useful in the enterprise
 When you can't find a product you are happy

with, consider making it yourself
 Much more functionality
 May not be the cheaper option

 An appliance solution is not necessarily auto-
pilot, but this path may void your warranty

Sean Wilkerson
sean@aleric.net

