
/

ZFS: An Overview

Eric Sproul

Now on Linux!

Thursday, November 14, 13

What is ZFS?

• Filesystem, volume manager, and RAID controller all in one

• More properly: a storage sub-system

• Production debut in Solaris 10 6/06 ("Update 2")

• Also available on FreeBSD, Linux, MacOS X

• 128-bit

• 264 snapshots, 248 files/directory, 264 bytes/filesystem,
278 bytes/pool, 264 devices/pool, 264 pools/system

Thursday, November 14, 13

128 Bits? Are You High?

• Petabyte data sets are increasingly common

• 1PB = 250 bytes

• 64-bit capacity limit only 14 doublings away

• Storage capacities doubling every 9-12 months

• Have about a decade before 64-bit space exhausted

• Filesystems tend to be around for several decades

• UFS, HFS: mid-1980s, ext2: 1993, XFS: 1994

"That's enough to survive Moore's Law until I'm dead."

- Jeff Bonwick, co-author of ZFS, 2004

http://blogs.oracle.com/bonwick/en_US/entry/128_bit_storage_are_you

Thursday, November 14, 13

http://blogs.oracle.com/bonwick/en_US/entry/128_bit_storage_are_you
http://blogs.oracle.com/bonwick/en_US/entry/128_bit_storage_are_you

What Does ZFS Do?

• Turns a collection of disks into a storage pool

• Provides immense storage capacity

• 256 ZB, or 278 bytes/pool

• Simplifies storage administration

• Two commands: zpool, zfs

Thursday, November 14, 13

What Else Does ZFS Do?

• Always consistent on disk (goodbye, fsck!)

• End-to-end, provable data integrity

• Snapshots, clones

• Block-level replication

• NAS/SAN features: NFS & CIFS shares, iSCSI targets

• Transparent compression, de-duplication

• Can use SSDs seamlessly to:

• extend traditional RAM-based read cache (L2ARC)

• provide a low-latency sync write accelerator (SLOG)

Thursday, November 14, 13

Pooled Storage?

Old & Busted

• Must decide on partitioning up front
• Limited number of slices
• Leads to wasted space, unintuitive layouts
• Costly to fix if wrong

New Hotness

• Big bucket o’ storage
• “Slice” becomes meaningless concept
• Data only occupies space as needed
• Organize data according to its nature

Thursday, November 14, 13

Useful Terms

zpool: One or more devices that provide physical storage and
(optionally) data replication for ZFS datasets. Also the root of the
namespace hierarchy.

vdev: A single device or collection of devices organized according to
certain performance and fault-tolerance characteristics. These are the
building blocks of zpools.

dataset: A unique path within the ZFS namespace, e.g.
tank/users, tank/db/mysql/data

property: Read-only or configurable object that can report statistics or
control some aspect of dataset behavior. Properties are inherited from
the parent unless overridden by the child.

Thursday, November 14, 13

Zpool Structure

• Zpools contain top-level vdevs, which in turn may contain leaf vdevs

• vdev types: block device, file, mirror, raidz{1,2,3}, spare, log, cache

• Certain vdev types provide fault tolerance (mirror, raidzN)

• Data striped across multiple top-level vdevs

• Zpools can be expanded on-the-fly by adding more top-level vdevs,
but cannot be shrunk

Thursday, November 14, 13

Zpool Examples

Single disk: zpool create data c0t2d0

 NAME STATE READ WRITE CKSUM
 data ONLINE 0 0 0
 c0t2d0 ONLINE 0 0 0

Mirror: zpool create data mirror c0t2d0 c0t3d0

 NAME STATE READ WRITE CKSUM
 data ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 c0t2d0 ONLINE 0 0 0
 c0t3d0 ONLINE 0 0 0

Thursday, November 14, 13

Zpool Examples

Striped Mirror: zpool create data mirror c0t2d0 c0t3d0 mirror c0t4d0 c0t5d0

 NAME STATE READ WRITE CKSUM
 data ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 c0t2d0 ONLINE 0 0 0
 c0t3d0 ONLINE 0 0 0
 mirror-1 ONLINE 0 0 0
 c0t4d0 ONLINE 0 0 0
 c0t5d0 ONLINE 0 0 0

RAID-Z: zpool create data raidz c0t2d0 c0t3d0 c0t4d0

 NAME STATE READ WRITE CKSUM
 data ONLINE 0 0 0
 raidz1-0 ONLINE 0 0 0
 c0t2d0 ONLINE 0 0 0
 c0t3d0 ONLINE 0 0 0
 c0t4d0 ONLINE 0 0 0

Thursday, November 14, 13

Datasets

• Hierarchical namespace, rooted at <poolname>

• Default type: filesystem

• Other types: volume (zvol), snapshot, clone

• Easy to create; use datasets as policy administration points

• Can be moved to another pool or backed up via zfs send/recv

zfs list data
NAME USED AVAIL REFER MOUNTPOINT
data 1.03G 6.78G 22K /data
data/myfs 21K 6.78G 21K /data/myfs
data/myfs@today 0 - 21K -
data/home 21K 6.78G 21K /export/home
data/myvol 1.03G 7.81G 16K -

Thursday, November 14, 13

Dataset Properties

zfs get all data/myfs
NAME PROPERTY VALUE SOURCE
data/myfs type filesystem -
data/myfs creation Tue Sep 3 19:28 2013 -
data/myfs used 31K -
data/myfs available 441G -
data/myfs referenced 31K -
data/myfs compressratio 1.00x -
data/myfs mounted yes -
data/myfs quota none default
data/myfs reservation none default
data/myfs recordsize 128K default
data/myfs mountpoint /data/myfs default
data/myfs sharenfs off default
data/myfs checksum on default
data/myfs compression on inherited from data
data/myfs atime on default
...

Thursday, November 14, 13

Property Example: mountpoint

zfs get mountpoint data/myfs
NAME PROPERTY VALUE SOURCE
data/myfs mountpoint /data/myfs default

df -h
Filesystem size used avail capacity Mounted on
data 7.8G 21K 6.8G 1% /data
data/myfs 7.8G 21K 6.8G 1% /data/myfs

zfs set mountpoint=/omgcool data/myfs

zfs get mountpoint data/myfs
NAME PROPERTY VALUE SOURCE
data/myfs mountpoint /omgcool local

df -h
Filesystem size used avail capacity Mounted on
data 7.8G 21K 6.8G 1% /data
data/myfs 7.8G 21K 6.8G 1% /omgcool

Thursday, November 14, 13

Property Example: compression

cp /usr/dict/words /omgcool/
du -h --apparent-size /omgcool/words
202K /omgcool/words

zfs set compression=on data/myfs

cp /usr/dict/words /omgcool/words.2
du -h --apparent-size /omgcool/words*
202K /omgcool/words
202K /omgcool/words.2

du -h /omgcool/words*
259K /omgcool/words
138K /omgcool/words.2

Setting affects new data only
Default algorithm is LZJB (an LZO variant)

Also gzip(-{1-9}), zle, lz4

Thursday, November 14, 13

On-Disk Consistency

• Copy-on-write: never overwrite existing data

• Transactional, atomic updates

• In case of power failure, data is either old or new, not a mix

• This does NOT mean you won't lose data! Only that you stand to
lose what was in flight, instead of (potentially) the entire pool.

Thursday, November 14, 13

Copy-On-Write

Starting block tree

Thursday, November 14, 13

Copy-On-Write

Changed data get new blocks
Never modifies existing data

Thursday, November 14, 13

Copy-On-Write

Indirect blocks also change

Thursday, November 14, 13

Copy-On-Write

Atomically update* uberblock to point at updated blocks
*The uberblock technically gets overwritten, but:

4 copies are stored as part of the vdev label and are updated in transactional pairs

Thursday, November 14, 13

Data Integrity

• Silent corruption is our mortal enemy

• Defects can occur anywhere: disks, firmware, cables, kernel drivers

• Main memory has ECC and periodic scrubbing; why shouldn’t
storage have something similar?

• “Noisy” corruption still a problem too

• Power outages, accidental overwrite, use a disk as swap

Thursday, November 14, 13

Data Integrity

Traditional Method:
Disk Block Checksum

data

ck
su

m

Only detects problems after data is successfully written (“bit rot”)

Won’t catch silent corruption caused by
issues in the I/O path between host and disk, e.g.

HBA/array firmware bugs, bad cabling

Thursday, November 14, 13

Data Integrity

ptr
cksum

ptr
cksum

• Store checksum in block pointer

• Isolates faults between checksum
and data

• Forms a hash tree, enabling
validation of the entire pool

• 256-bit checksums

• fletcher4 (default; simple and fast) or
SHA-256 (slower, more secure)

• Checked every time block is read

• ‘zpool scrub’: validate entire pool on
demand

The ZFS Way

data

Thursday, November 14, 13

datadata

Data Integrity

App

ZFS

data

Thursday, November 14, 13

datadata

Data Integrity

App

ZFS
data

data

Thursday, November 14, 13

datadata

Data Integrity

App

ZFS
data

Thursday, November 14, 13

datadata

Data Integrity

App

ZFS

data

Thursday, November 14, 13

datadata

Data Integrity

App

ZFS

data

data

Thursday, November 14, 13

datadata

Data Integrity

App

ZFS

data

Self-healing mirror!

data

Thursday, November 14, 13

Snapshots

• Read-only copy of a filesystem or volume

• Denoted by ‘@’ in the dataset name

• Constant time, consume almost no space at first

• Can have arbitrary names

• Filesystem snapshots can be browsed via a hidden directory

• .zfs/snapshot/<snapname>

• visibility controlled by snapdir property

Thursday, November 14, 13

Clones

• Read-write snapshot

• Uses snapshot as origin

• Changes accumulate to clone

• Unmodified data references origin snapshot

• Saves space when making many copies of similar data

Thursday, November 14, 13

Block-Level Replication

• zfs 'send' and 'receive' sub-commands

• Source is a snapshot

• 'zfs send' results in a stream of bytes to standard output

• 'zfs receive' creates a new dataset at the destination

• Send incremental between any two snapshots of the same dataset

• Pipe output to ssh or nc for remote replication

zfs snapshot data/myfs@snap1
zfs send data/myfs@snap1 | ssh host2 "zfs receive tank/myfs"
zfs snapshot data/myfs@snap2
zfs send -i data/myfs@snap1 data/myfs@snap2 | \
 ssh host2 "zfs receive tank/myfs"

Thursday, November 14, 13

NAS/SAN Features

• NAS: sharenfs, sharesmb

• Activate by setting property to "on"

• Additional config options may be passed in lieu of "on"

• illumos, Solaris, Linux have both; FreeBSD has only sharenfs

• SAN: shareiscsi

• Only works on ZFS volumes (zvols)

• Linux still uses this; illumos/Solaris have COMSTAR;
FreeBSD does not have an iSCSI target daemon

Thursday, November 14, 13

Block Transforms

• Compression

• lzjb, gzip, zle, lz4

• lzjb, zle, lz4 are fast; basically "free" on modern CPUs

• Can improve performance due to fewer IOPS

• De-duplication

• Not a general-purpose solution

• Make sure you have lots of RAM available

Thursday, November 14, 13

Solid-State Disks

• Used for extra read cache and to accelerate sync writes

• Middle ground of latency, cost/GB between RAM & spinning platter

• Read: L2ARC (vdev type "cache")

• Extends ARC (RAM cache)

• Large MLC devices

• Write: SLOG (vdev type "log")

• Accelerates the ZFS Intent Log (ZIL), which tracks sync writes to
be replayed in case of failure

• Small SLC devices

• Increasingly, SSDs are supplanting spinning disks as primary storage

Thursday, November 14, 13

ZFS Case Study: Staging Database

• Developing web app fronting large PgSQL BI database

• Need a writable copy for application testing

• Requirements:

• Quick to create

• Repeatable

• Must not threaten availability or redundancy

Thursday, November 14, 13

ZFS Case Study: Staging Database

Starting state

bi01tank/pgsql/data
bi01tank/pgsql/wal_archive

Thursday, November 14, 13

ZFS Case Study: Staging Database

Take snapshots

bi01tank/pgsql/data@stage
bi01tank/pgsql/wal_archive@stage

zfs snapshot -r bi01tank/pgsql@stage

Thursday, November 14, 13

ZFS Case Study: Staging Database

Create clones

bi01tank/pgsql/data@stage
bi01tank/pgsql/wal_archive@stage

bi01tank/stage/data
bi01tank/stage/wal_archive

Cloned datasets are dependent on their origin
Unchanged data is referenced, new data accumulates to clone

zfs clone <snapshot> <new_dataset>

Thursday, November 14, 13

ZFS Case Study: Staging Database

Stage zone

set zonepath=/zones/bistage
set autoboot=true
set
limitpriv=default,dtrace_proc,dtrace_user
set ip-type=shared
add net
set address=10.11.12.13
set physical=bnx0
end
add dataset
set name=bi01tank/stage
end

Thursday, November 14, 13

ZFS Case Study: Staging Database

• Inside "bistage" zone we now have a writable copy of the DB

• Can now bring up Postgres, use it, discard data when done

• Only changed data occupies additional space

• Unmodified data references origin snapshot

Thursday, November 14, 13

Where Can I Get ZFS?

• illumos (SmartOS, OmniOS, OpenIndiana, etc.)

• Oracle Solaris 10, 11

• FreeBSD >= 7

• Linux: http://zfsonlinux.org/

• supports kernels 2.6.26 - 3.11

• packages for most distros

• MacOS X

• MacZFS: https://code.google.com/p/maczfs/

• supports 10.5-10.8

Thursday, November 14, 13

http://zfsonlinux.org
http://zfsonlinux.org
https://code.google.com/p/maczfs/
https://code.google.com/p/maczfs/

Questions?

• http://open-zfs.org/

• http://wiki.illumos.org/display/illumos/ZFS

• http://zfsonlinux.org/faq.html

• http://www.freebsd.org/doc/handbook/filesystems-zfs.html

• https://code.google.com/p/maczfs/wiki/FAQ

Thursday, November 14, 13

http://open-zfs.org/
http://open-zfs.org/
http://wiki.illumos.org/display/illumos/ZFS
http://wiki.illumos.org/display/illumos/ZFS
http://zfsonlinux.org/faq.html
http://zfsonlinux.org/faq.html
http://www.freebsd.org/doc/handbook/filesystems-zfs.html
http://www.freebsd.org/doc/handbook/filesystems-zfs.html
https://code.google.com/p/maczfs/wiki/FAQ
https://code.google.com/p/maczfs/wiki/FAQ

