

WireGuard

Tunneling with simplicity and usability

Intro & Disclaimers
● Hi
● I’m not an expert (yet)

– I’m not a cryptologist either
● YMMV
● I gave an OpenVPN presentation here before

– ...yeeaaaah... we all grow…?

Executive Summary
● WireGuard is a lightweight VPN solution

– Aims to replace IPsec & OpenVPN
– Practical, usable and simple

● i.e. not some academic research mumbo-jumbo
– Uses tunnels-as-in-SSH, not TunneLS-as-in-TLS

● It’s Open Source
● It’s secure (formal verification of the protocol)

– It’s small, which helps (4000 LOC)
● It’ll be in Linux Kernel 5.6

OpenVPN & IPsec
● Both are cool

– If you know what you’re doing
– And you want to deal with them

● OpenVPN
– Relatively high level of complexity
– Management is finicky
– Uses OpenSSL, a large & complex code-base

● Not intended as a judgment, just an observation
● IPsec

– High level of complexity
● Both OpenVPN & IPsec are easy to mess up

– And then cause massive headaches

WireGuard vs OpenVPN/IPsec

● Numbers from the white-paper
● Bottlenecks

– OpenVPN & IPsec tests showed 100% CPU utilization
– WireGuard did not utilize CPU at 100%
– Suggests that WireGuard saturated the link, i.e. the network bandwidth was the bottleneck, not the CPU

● OpenVPN is user-space, IPsec & Wireguard are not, which also explains the huge discrepancy shown by OpenVPN

https://www.wireguard.com/papers/wireguard.pdf

Theory
● Layer 3/Network layer

– Packet Routing and Forwarding
● Shows up as a Virtual Network Interface

– It’s just a device
– e.g. /dev/wg0

● Device can be managed using ip or ifconfig
– add type wireguard, delete, up, down, routes

● Firewall rules are simple
– e.g. iptables -A chain -i wg0 -j rule

● Kernel-space
– Currently as DKMS/Dynamic Kernel Module Support
– Performance

Theory: Crypto and Security
● Encryption “at the device”

– You just see the device
– ClearText → device CipherText → → device ClearText→

● Perfect Forward Secrecy
– Compromised session key != compromised private key

● Key Exchange similar to OpenSSH
– Key Size is 32bytes (256bits/44 chars in base64)

● EC Crypto (I’m not a cryptologist, I’m just parroting)
● Authenticated packets only: silence is golden

– Everything else is dropped at the device
– Not-dropped/routed therefore authenticated & good

● Stateless
– No state to attack or trick

● Routing based on crypto keys

Theory: CryptoKey Routing
● Routing happens based on peer’s public key
● Every interface has its own:

– Public-private key pair
– UDP port
– Routing table of pubkeys allowed source IP→

● When sending packets
– Destination determines session key for encryption

● When receiving packets
– if source IP does not match the decryption key (i.e. it

cannot be authenticated), then the packet is rejected
– Thus, if a packet is not rejected, it is from an

authenticated source
– This addresses a set capabilities of IPsec

Theory: Flow – Sending
● ClearText packet enters /dev/wg0
● Packet is encrypted (using ChaCha20Poly1305)

for the destination
– If no peer exists, then -ENOKEY (i.e. no route

to host) is returned
● Encrypted payload encapsulated with headers

into a packet
● Encrypted UDP packet is sent to destination

Theory: Flow - Receiving
● UDP packet received on WireGuard port

– This is not the same as the device
● Headers inform WireGuard which peer (i.e.

public/session key) to use
– Validate and drop if validation fails

● Updates the endpoint of the Peer
– To allow for roaming and UDP is session-less

● Decrypt packet payload
● If the packet needs forwarding, it is forwarded
● If the packet is for this host, insert into device

Practicum: Install & Prepare
● Add PPA and install WireGuard (client & server)

$> add-apt-repository ppa:wireguard/wireguard
$> apt update
$> apt install wireguard

● Set up IP forwarding on server: /etc/sysctl.conf
net.ipv4.conf.all.forwarding=1
net.ipv4.ip_forwarding=1
net.ipv6.conf.all.forwarding=1
net.ipv6.conf.default.forwarding=1

Practicum: Generate Keys
● You need a private/public key (client & server)

– Generate Keys
$> wg genkey > privatekey
$> wg pubkey < privatekey > publickey

– In 1 go
$> wg genkey | tee privatekey | wg pubkey > publickey

– Security:
$> chmod -R 600 *key # or do the commands above with umask 077

Practicum: Configure Server
● /etc/wireguard/wg0.conf (set permissions!!)

[Interface]
Address = SERVER_CIDR # e.g. 10.0.0.1/32
SaveConfig = false # Don’t overwrite what we do here on service stop
PostUp = iptables -I INPUT 1 -i %i -j ACCEPT; iptables -A FORWARD -i %i -j
ACCEPT; iptables -A FORWARD -o %i -j ACCEPT; iptables -t nat -A POSTROUTING
-o eth0 -j MASQUERADE
PostDown = iptables -D INPUT -i %i -j ACCEPT; iptables -D FORWARD -i %i -j
ACCEPT; iptables -D FORWARD -o %i -j ACCEPT; iptables -t nat -D POSTROUTING
-o eth0 -j MASQUERADE
ListenPort = 23456 # or whatever
PrivateKey = CONTENT_OF_PRIVATEKEY_FILE
PublicKey = CONTENT_OF_PUBLICKEY_FILE (to have a record)

[Peer]
PublicKey = PEER_00_PUBLICKEY
AllowedIPs = PEER_00_ALLOWED_IP_CIDRS

[Peer]
PublicKey = PEER_01_PUBLICKEY
AllowedIPs = PEER_01_ALLOWED_IP_CIDRS

Practicum: Start Server
● SystemD

$> sudo systemctl start wg-quick@wg0.service
$> sudo systemctl enable wg-quick@wg0.service

● Inspect WireGuard
$> sudo wg
interface: DEVICE_NAME
 public key: PUBLICKEY_HERE
 private key: (hidden)
 listening port: MY_PORT_HERE

peer: PUBLICKEY_OF_OTHER_SIDE
 endpoint: MY_IP:443
 allowed ips: CIDRS_HERE
 latest handshake: 3 seconds ago
 transfer: 46.33 KiB received, 41.50 KiB sent
 persistent keepalive: every 25 seconds

[...more peers here...]

Practicum: Configure Client
● /etc/wireguard/wg0.conf

[Interface]
Address = YOUR_VPN_IP_IE_HOW_YOU_LL_BE_KNOWN
PrivateKey = YOUR_PRIVATEKEY
ListenPort = YOUR_INBOUND_PORT

[Peer]
PublicKey = YOUR_SERVERS_PUBLICKEY
Endpoint = YOUR_SERVER:YOUR_PORT
AllowedIPs = 0.0.0.0/0, ::/0 # what to route through here (here everything)
PersistentKeepalive = 25

● Bring the interface up
$> sudo wg-quick up wg0

● See also WireGuard’s quickstart for what wg-
quick actually does behind the scenes

https://www.wireguard.com/quickstart/

VPN script
● I store my configurations in ~/.wireguard/*.conf
● Wrote a vpn script to manage my VPNs

$> vpn help
usage: vpn [list, status, {up|down} <name>]
 list List all VPNs
 status Shows the vpn status (equivalent to calling the script
without any arguments)
 up <name> Bring up the VPN named <name>
 down <name> Take down the VPN named <name>

VPN script: list
● All VPNs I have configured
● Lists ${HOME}/.wireguard/*.conf

$> vpn list
Available VPNs (from ${HOME}/.wireguard):
===
 - attached_home
 - ${WORK}
 - home

● Configurations
– home: pretend I’m home

AllowedIPs = 0.0.0.0/0, ::/0

– attached_home: get me access to my home
resources but don’t route it ALL through there

● AllowedIPs = ${WG_SERVER_INTERFACE_24CIDR}, ${HOME_NETWORK_24CIDR}

– ${WORK}: route it all through work

VPN script: up/down
● Up: brings up the named VPN

– As in ${HOME}/.wireguard/<name>.conf
$> vpn up home
[#] ip link add home type wireguard
[#] wg setconf home /dev/fd/63
[#] ip -4 address add ${WG_SERVER_INTERFACE_24CIDR} dev home
[#] ip link set mtu 1420 up dev home
[#] wg set home fwmark 51820
[#] ip -6 route add ::/0 dev home table 51820
[#] ip -6 rule add not fwmark 51820 table 51820
[#] ip -6 rule add table main suppress_prefixlength 0
[#] ip -4 route add 0.0.0.0/0 dev home table 51820
[#] ip -4 rule add not fwmark 51820 table 51820
[#] ip -4 rule add table main suppress_prefixlength 0
[#] ${HOME}/.wireguard/home.script.bash PostUp

● Down: takes down the named VPN
[#] ${HOME}/.wireguard/home.script.bash PreDown
[#] ip -4 rule delete table 51820
[#] ip -4 rule delete table main suppress_prefixlength 0
[#] ip -6 rule delete table 51820
[#] ip -6 rule delete table main suppress_prefixlength 0
[#] ip link delete dev home

VPN script: status
● Shows the current status
● When no VPN active

VPN Status
==========

 Routes

 default h.i.j.1 # my gateway
 a.b.0.0/16 wlan0
 e.f.g.0/24 virbr0
 h.i.j.0/24 wlan0

VPN script: status
● When VPN active (and routing everything)

VPN Status
==========
interface: home
 public key: MY_PUBLICKEY
 private key: (hidden)
 listening port: MY_PORT
 fwmark: 0xca6c

peer: MY_HOME_PUBLICKEY
 endpoint: MY_HOME_ENDPOINT
 allowed ips: 0.0.0.0/0, ::/0
 latest handshake: 3 seconds ago
 transfer: 412 B received, 5.43 KiB sent
 persistent keepalive: every 25 seconds

 Routes

 default e.f.g.1 # my gateway
 a.b.0.0/16 wlan0
 e.f.g.0/24 wlan0

VPN script: status
● When VPN active (only routing 10.0.{1,2}.0/24)

– Everything else bypasses WireGuard
VPN Status
==========
interface: attached_home
 public key: MY_PUBLICKEY
 private key: (hidden)
 listening port: MY_PORT
 # no fwmark?

peer: MY_HOME_PUBLICKEY
 endpoint: MY_HOME_ENDPOINT
 allowed ips: 10.0.1.0/24, 10.0.2.0/24
 latest handshake: 3 seconds ago
 transfer: 412 B received, 5.43 KiB sent
 persistent keepalive: every 25 seconds

 Routes

 default e.f.g.1 # my gateway
 a.b.0.0/16 wlan0
 e.f.g.0/24 wlan0
 10.0.2.0/24 attached_home
 10.0.1.0/24 attached_home

VPN script: code

Configuration Tricks
● [Interface]: PreUp/PostUp/PreDown/PostDown

– Executes the specified executable
– Examples:

● PostUp: mount something, ping something
● PreDown: unmount the thing you mounted
● PostDown: modify firewall rules

– e.g. in my [attached_]home.conf:
[Interface]
...other stuff...
PostUp = /home/someone/.wireguard/home.script.bash PostUp
PreDown = /home/someone/.wireguard/home.script.bash PreDown

– Does not need to be the same script
● DNS

– DNS Server(s) to use

Demo yourself
● Install WireGuard first
● Route one host only (192.168.4.1)

$> wget https://git.zx2c4.com/wireguard-tools/plain/contrib/ncat-client-
server/client.sh
$> sudo client.sh # creates /dev/wg0
$> curl 192.168.4.1
$> sudo ip link delete wg0 # when done

● Route all your traffic (0.0.0.0/0)
$> curl icanhazip.com
$> sudo client.sh default-route # creates /dev/wg0
$> curl icanhazip.com # should be different from the first one
$> sudo ip link delete wg0 # when done

Services offering WireGuard
● IVPN (beta)
● Mullvad (beta)
● You

https://en.wikipedia.org/wiki/IVPN
https://en.wikipedia.org/wiki/Mullvad
http://127.0.0.1/

Links
● https://www.wireguard.com/
● https://www.wireguard.com/quickstart/
● https://www.wireguard.com/papers/wireguard.pdf

– Highly recommended read!
● https://en.wikipedia.org/wiki/Wireguard
● https://hal.inria.fr/hal-02100345v2/document

– Formal cryptographic proof of the protocol
– June 2019

https://www.wireguard.com/
https://www.wireguard.com/quickstart/
https://www.wireguard.com/papers/wireguard.pdf
https://en.wikipedia.org/wiki/Wireguard
https://hal.inria.fr/hal-02100345v2/document

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

