
  

WireGuard

Tunneling with simplicity and usability



Intro & Disclaimers
● Hi
● I’m not an expert (yet)

– I’m not a cryptologist either
● YMMV
● I gave an OpenVPN presentation here before

– ...yeeaaaah... we all grow…?



Executive Summary
● WireGuard is a lightweight VPN solution

– Aims to replace IPsec & OpenVPN
– Practical, usable and simple

● i.e. not some academic research mumbo-jumbo
– Uses tunnels-as-in-SSH, not TunneLS-as-in-TLS

● It’s Open Source
● It’s secure (formal verification of the protocol)

– It’s small, which helps (4000 LOC)
● It’ll be in Linux Kernel 5.6



OpenVPN & IPsec
● Both are cool

– If you know what you’re doing
– And you want to deal with them

● OpenVPN
– Relatively high level of complexity
– Management is finicky
– Uses OpenSSL, a large & complex code-base

● Not intended as a judgment, just an observation
● IPsec

– High level of complexity
● Both OpenVPN & IPsec are easy to mess up

– And then cause massive headaches



WireGuard vs OpenVPN/IPsec

● Numbers from the white-paper
● Bottlenecks

– OpenVPN & IPsec tests showed 100% CPU utilization
– WireGuard did not utilize CPU at 100%
– Suggests that WireGuard saturated the link, i.e. the network bandwidth was the bottleneck, not the CPU

● OpenVPN is user-space, IPsec & Wireguard are not, which also explains the huge discrepancy shown by OpenVPN

https://www.wireguard.com/papers/wireguard.pdf


Theory
● Layer 3/Network layer

– Packet Routing and Forwarding
● Shows up as a Virtual Network Interface

– It’s just a device
– e.g. /dev/wg0

● Device can be managed using ip or ifconfig
– add type wireguard, delete, up, down, routes

● Firewall rules are simple
– e.g. iptables -A chain -i wg0 -j rule

● Kernel-space
– Currently as DKMS/Dynamic Kernel Module Support
– Performance



Theory: Crypto and Security
● Encryption “at the device”

– You just see the device
– ClearText  → device  CipherText  → → device  ClearText→

● Perfect Forward Secrecy
– Compromised session key != compromised private key

● Key Exchange similar to OpenSSH
– Key Size is 32bytes (256bits/44 chars in base64)

● EC Crypto (I’m not a cryptologist, I’m just parroting)
● Authenticated packets only: silence is golden

– Everything else is dropped at the device
– Not-dropped/routed therefore authenticated & good

● Stateless
– No state to attack or trick

● Routing based on crypto keys



Theory: CryptoKey Routing
● Routing happens based on peer’s public key
● Every interface has its own:

– Public-private key pair
– UDP port
– Routing table of pubkeys  allowed source IP→

● When sending packets
– Destination determines session key for encryption

● When receiving packets
– if source IP does not match the decryption key (i.e. it 

cannot be authenticated), then the packet is rejected
– Thus, if a packet is not rejected, it is from an 

authenticated source
– This addresses a set capabilities of IPsec



Theory: Flow – Sending
● ClearText packet enters /dev/wg0
● Packet is encrypted (using ChaCha20Poly1305) 

for the destination
– If no peer exists, then -ENOKEY (i.e. no route 

to host) is returned
● Encrypted payload encapsulated with headers 

into a packet
● Encrypted UDP packet is sent to destination



Theory: Flow - Receiving
● UDP packet received on WireGuard port

– This is not the same as the device
● Headers inform WireGuard which peer (i.e. 

public/session key) to use
– Validate and drop if validation fails

● Updates the endpoint of the Peer
– To allow for roaming and UDP is session-less

● Decrypt packet payload
● If the packet needs forwarding, it is forwarded
● If the packet is for this host, insert into device



Practicum: Install & Prepare
● Add PPA and install WireGuard (client & server)

$> add-apt-repository ppa:wireguard/wireguard
$> apt update
$> apt install wireguard

● Set up IP forwarding on server: /etc/sysctl.conf
net.ipv4.conf.all.forwarding=1
net.ipv4.ip_forwarding=1
net.ipv6.conf.all.forwarding=1
net.ipv6.conf.default.forwarding=1



Practicum: Generate Keys
● You need a private/public key (client & server)

– Generate Keys
$> wg genkey > privatekey
$> wg pubkey < privatekey > publickey

– In 1 go
$> wg genkey | tee privatekey | wg pubkey > publickey

– Security:
$> chmod -R 600 *key # or do the commands above with umask 077



Practicum: Configure Server
● /etc/wireguard/wg0.conf (set permissions!!)

[Interface]
Address = SERVER_CIDR # e.g. 10.0.0.1/32
SaveConfig = false # Don’t overwrite what we do here on service stop
PostUp = iptables -I INPUT 1 -i %i -j ACCEPT; iptables -A FORWARD -i %i -j 
ACCEPT; iptables -A FORWARD -o %i -j ACCEPT; iptables -t nat -A POSTROUTING 
-o eth0 -j MASQUERADE
PostDown = iptables -D INPUT -i %i -j ACCEPT; iptables -D FORWARD -i %i -j 
ACCEPT; iptables -D FORWARD -o %i -j ACCEPT; iptables -t nat -D POSTROUTING 
-o eth0 -j MASQUERADE
ListenPort = 23456 # or whatever
PrivateKey = CONTENT_OF_PRIVATEKEY_FILE
# PublicKey = CONTENT_OF_PUBLICKEY_FILE (to have a record)

[Peer]
PublicKey =  PEER_00_PUBLICKEY
AllowedIPs = PEER_00_ALLOWED_IP_CIDRS

[Peer]
PublicKey =  PEER_01_PUBLICKEY
AllowedIPs = PEER_01_ALLOWED_IP_CIDRS



Practicum: Start Server
● SystemD

$> sudo systemctl start wg-quick@wg0.service
$> sudo systemctl enable wg-quick@wg0.service

● Inspect WireGuard
$> sudo wg
interface: DEVICE_NAME
  public key: PUBLICKEY_HERE
  private key: (hidden)
  listening port: MY_PORT_HERE

peer: PUBLICKEY_OF_OTHER_SIDE
  endpoint: MY_IP:443
  allowed ips: CIDRS_HERE
  latest handshake: 3 seconds ago
  transfer: 46.33 KiB received, 41.50 KiB sent
  persistent keepalive: every 25 seconds

[...more peers here...]



Practicum: Configure Client
● /etc/wireguard/wg0.conf

[Interface]
Address = YOUR_VPN_IP_IE_HOW_YOU_LL_BE_KNOWN
PrivateKey = YOUR_PRIVATEKEY
ListenPort = YOUR_INBOUND_PORT

[Peer]
PublicKey = YOUR_SERVERS_PUBLICKEY
Endpoint = YOUR_SERVER:YOUR_PORT
AllowedIPs = 0.0.0.0/0, ::/0 # what to route through here (here everything)
PersistentKeepalive = 25

● Bring the interface up
$> sudo wg-quick up wg0

● See also WireGuard’s quickstart for what wg-
quick actually does behind the scenes

https://www.wireguard.com/quickstart/


VPN script
● I store my configurations in ~/.wireguard/*.conf
● Wrote a vpn script to manage my VPNs

$> vpn help
usage: vpn [list, status, {up|down} <name>]
  list          List all VPNs
  status        Shows the vpn status (equivalent to calling the script 
without any arguments)
  up <name>     Bring up the VPN named <name>
  down <name>   Take down the VPN named <name>



VPN script: list
● All VPNs I have configured
● Lists ${HOME}/.wireguard/*.conf

$> vpn list
Available VPNs (from ${HOME}/.wireguard):
=========================================
  - attached_home
  - ${WORK}
  - home

● Configurations
– home: pretend I’m home

AllowedIPs = 0.0.0.0/0, ::/0

– attached_home: get me access to my home 
resources but don’t route it ALL through there

● AllowedIPs = ${WG_SERVER_INTERFACE_24CIDR}, ${HOME_NETWORK_24CIDR}

– ${WORK}: route it all through work



VPN script: up/down
● Up: brings up the named VPN

– As in ${HOME}/.wireguard/<name>.conf
$> vpn up home
[#] ip link add home type wireguard
[#] wg setconf home /dev/fd/63
[#] ip -4 address add ${WG_SERVER_INTERFACE_24CIDR} dev home
[#] ip link set mtu 1420 up dev home
[#] wg set home fwmark 51820
[#] ip -6 route add ::/0 dev home table 51820
[#] ip -6 rule add not fwmark 51820 table 51820
[#] ip -6 rule add table main suppress_prefixlength 0
[#] ip -4 route add 0.0.0.0/0 dev home table 51820
[#] ip -4 rule add not fwmark 51820 table 51820
[#] ip -4 rule add table main suppress_prefixlength 0
[#] ${HOME}/.wireguard/home.script.bash PostUp

● Down: takes down the named VPN
[#] ${HOME}/.wireguard/home.script.bash PreDown
[#] ip -4 rule delete table 51820
[#] ip -4 rule delete table main suppress_prefixlength 0
[#] ip -6 rule delete table 51820
[#] ip -6 rule delete table main suppress_prefixlength 0
[#] ip link delete dev home



VPN script: status
● Shows the current status
● When no VPN active

VPN Status
==========

  Routes
  ------
  default     h.i.j.1 # my gateway
  a.b.0.0/16  wlan0
  e.f.g.0/24  virbr0
  h.i.j.0/24  wlan0



VPN script: status
● When VPN active (and routing everything)

VPN Status
==========
interface: home
  public key: MY_PUBLICKEY
  private key: (hidden)
  listening port: MY_PORT
  fwmark: 0xca6c

peer: MY_HOME_PUBLICKEY
  endpoint: MY_HOME_ENDPOINT
  allowed ips: 0.0.0.0/0, ::/0
  latest handshake: 3 seconds ago
  transfer: 412 B received, 5.43 KiB sent
  persistent keepalive: every 25 seconds

  Routes
  ------
  default     e.f.g.1 # my gateway
  a.b.0.0/16  wlan0
  e.f.g.0/24  wlan0



VPN script: status
● When VPN active (only routing 10.0.{1,2}.0/24)

– Everything else bypasses WireGuard
VPN Status
==========
interface: attached_home
  public key: MY_PUBLICKEY
  private key: (hidden)
  listening port: MY_PORT
                # no fwmark?

peer: MY_HOME_PUBLICKEY
  endpoint: MY_HOME_ENDPOINT
  allowed ips: 10.0.1.0/24, 10.0.2.0/24
  latest handshake: 3 seconds ago
  transfer: 412 B received, 5.43 KiB sent
  persistent keepalive: every 25 seconds

  Routes
  ------
  default     e.f.g.1 # my gateway
  a.b.0.0/16  wlan0
  e.f.g.0/24  wlan0
  10.0.2.0/24 attached_home
  10.0.1.0/24 attached_home



VPN script: code



Configuration Tricks
● [Interface]: PreUp/PostUp/PreDown/PostDown

– Executes the specified executable
– Examples:

● PostUp: mount something, ping something
● PreDown: unmount the thing you mounted
● PostDown: modify firewall rules

– e.g. in my [attached_]home.conf:
[Interface]
# ...other stuff...
PostUp = /home/someone/.wireguard/home.script.bash PostUp
PreDown = /home/someone/.wireguard/home.script.bash PreDown

– Does not need to be the same script
● DNS

– DNS Server(s) to use



Demo yourself
● Install WireGuard first
● Route one host only (192.168.4.1)

$> wget https://git.zx2c4.com/wireguard-tools/plain/contrib/ncat-client-
server/client.sh
$> sudo client.sh          # creates /dev/wg0
$> curl 192.168.4.1
$> sudo ip link delete wg0 # when done

● Route all your traffic (0.0.0.0/0)
$> curl icanhazip.com
$> sudo client.sh default-route # creates /dev/wg0
$> curl icanhazip.com      # should be different from the first one
$> sudo ip link delete wg0 # when done



Services offering WireGuard
● IVPN (beta)
● Mullvad (beta)
● You

https://en.wikipedia.org/wiki/IVPN
https://en.wikipedia.org/wiki/Mullvad
http://127.0.0.1/


Links
● https://www.wireguard.com/
● https://www.wireguard.com/quickstart/
● https://www.wireguard.com/papers/wireguard.pdf

– Highly recommended read!
● https://en.wikipedia.org/wiki/Wireguard
● https://hal.inria.fr/hal-02100345v2/document

– Formal cryptographic proof of the protocol
– June 2019

https://www.wireguard.com/
https://www.wireguard.com/quickstart/
https://www.wireguard.com/papers/wireguard.pdf
https://en.wikipedia.org/wiki/Wireguard
https://hal.inria.fr/hal-02100345v2/document
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