Building Web Applications with LAMP

Jason W. Dixon

2003-02-12

Abstract

Today’s Internet is an evolving medium. In order to maintain the nec-
essary traffic to sustain one’s presence, most commercial websites, and,
indeed, many private ones as well, rely on “fresh” information to stimulate
and capture their readers’ interests. The ability to maintain the necessary
balance between dynamic content and a scalable, secure site has forced
most developers to migrate away from the static pages of the past to mod-
ern, scalable designs. The obvious solution was to use HTML (HyperText
Markup Language) as it was intended; HTML is a structural markup lan-
guage that is used to convey most of the information found on the World
Wide Web. However, HTML, coupled with modern scripting languages,
allows us to provide customized, “on-the-fly” pages for our clients.

The ability of this framework to provide highly customized solutions
have enabled developers to take further advantage of the client/server
model as the basis for traditional “thick” applications. Coupled with pow-
erful RDBMS servers, such as the MySQL database, these applications
can be extended to solve a spectrum of solutions, efficiently and inexpen-
sively.

Naturally, open standards such as those found on the Internet lead
us towards open solutions. Linux, the free operating system developed
by Linus Torvalds and maintained by thousands of volunteers worldwide,
provides an open platform on which to build our dynamic systems. All
of today’s leading Internet protocols and server software has been- or will
soon be- ported to Linux. Apache, the world’s leading webserver software,
has been a mainstay on Linux servers for many years. Apache allows us
to quickly and securely serve up static or dynamic content.

This talk presents a fully open-sourced solution for creating your own
Web Application using LAMP. While the concept of LAMP has been
generalized to include the various *BSD operating systems, PostgreSQL
database, and other free projects, LAMP is rooted in the technologies of
Linux, Apache, MySQL, and Perl/PHP /Python. We will be building our
application using Red Hat Linux 8.0, Apache 2.0.40, MySQL 3-23.54, and
Perl 5.8.0.



1 Linux

1.1 Introduction

Red Hat Linux is the leading commercial Linux distribution. Although their
visible product is the release of the GNU/Linux operating system, their primary
focus is on services and support. This presentation is based on a custom instal-
lation of Red Hat Linux 8.0. It is assumed that the audience is familiar with
the installation process of the base Red Hat Linux system.

1.2 Prerequisites

The following packages will need to be installed. Each can be queried with the
“rpm -q <package>" command. If they are not installed, install them from CD?!
with the “rpm -ivh </path/to/rpm>” command.

1. Apache

Perl

mod _ssl

mod_ perl?

MySQL and MySQL-server®
perl-DBI

libdbi-dbd-mysql*

NS ok LN

1.3 Security

There are a plethora of security issues to take into consideration when building a
public webserver. First and foremost, the system should be patched or upgraded
to fix any known exploits. Running “up2date” on Red Hat Linux will allow us
to update all security and bug fixes to the most current versions.

e /etc/sysconfig/iptables

-A RH-Lokkit-0-50-INPUT -p tcp -m tcp --dport 80 --syn -j ACCEPT
-A RH-Lokkit-0-50-INPUT -p tcp -m tcp --dport 443 --syn -j ACCEPT®

e /sbin/service iptables restart

L... or adownload mirror such as ftp://mirror.cs.wisc.edu/pub/mirrors/linux /redhat /8.0 /en/os/i386 /RedHat /RPMS
2Unfortunately, mod perl 2.0 does not play nicely with Apache 2.0 as of the release of
Red Hat Linux 8.0. It appears that the included Perl does not handle multiple invocations
well.
3MySQL can be installed either from the RPM’s included with the Red Hat Linux release,
or from downloaded RPM’s found at the MySQL AB website (http://www.mysqgl.com).
4This package might have a different name, depending on the source or distribution. Ba-
sically, this is the DBD (database driver) for MySQL.
50nly add access to TCP port 443 if you want to allow HTTPS traffic.



2 Apache

2.1 Configuration

While we are working with Apache 2.0, much of the configuration changes we’re
implementing are similar with the older Apache 1.3 series.

e /etc/httpd/conf/httpd.conf
e ServerName®

<Directory ‘/var/www/html/lamp’’>
Options ExecCGI

AllowOverride None
DirectoryIndex index.cgi

Order Allow,Deny

Allow from all

SSLRequireSSL’

AuthType Basic

AuthName LAMP

AuthUserFile /etc/httpd/conf/lamp.users
Require valid-user

</Directory>

e htpasswd -c /etc/httpd/conf/lamp.users guest®
e chown root.apache /etc/httpd/conf/lamp.users
e chmod 640 /etc/httpd/conf/lamp.users

e /sbin/chkconfig —level 345 httpd on

e /sbin/service httpd start

2.2 Testing

e netstat -vant
e telnet localhost 80

e GET /

6Set this directive with the name of your host ONLY if you have working DNS. This
directive will allow Apache to perform a redirect to itself for URL completion purposes. If
you do not have working forward DNS for your hostname, you can still use “localhost” for
same-system testing, but comment this directive out when the system goes into production
status.

7Include this directive to require HT'TPS connections on port 443. Otherwise, leave it out.

80nly use the -c flag for creating a new password file.



3 MySQL

Although MySQL version 4.x is available, we will stay with the stable 3.x se-
ries. Many hard-core DBA’s prefer PostgreSQL for it’s advanced features (hot
backups, transactions, etc.), but MySQL will easily meet the needs of most
developers for non-commerce websites.

3.1 Configuration
e /sbin/chkconfig —level 345 mysqld on

/sbin/service mysqld start
e mysql install db®
e mysqgladmin -u root password <newpassword>

e mysqladmin -u root -p create <dbname>

3.2 Building the Data
e mysql -u root -p mysql

> CREATE TABLE data (
name varchar(20) NOT NULL default *’,
phone smallint(4) NOT NULL default ’0’,
PRIMARY KEY (name),
UNIQUE KEY name (name)
) TYPE=MyISAM;
INSERT INTO data VALUES (’Dave’,1001);
INSERT INTO data VALUES (’Jason’,1002);
INSERT INTO data VALUES (’Perry’,1003);
INSERT INTO data VALUES (’Joe’,1004);
INSERT INTO data VALUES (’Linus’,1337);
GRANT SELECT on lamp.* to lampuser IDENTIFIED BY ’<password>’;
GRANT SELECT on lamp.* to lampuser@localhost IDENTIFIED BY
’<password>’;
exit;

V VV V V V V V VvV

e mysqladmin -u root -p reload

3.3 Testing
e mysql -u lampuser -p lamp

> show tables;
> describe data;
> select * from data;

9Red Hat’s installation script takes care of this task for us.



3.4 Backups

An easy way to perform nightly backups is with the mysqldump command via
cron.

e mysgldump -u root -p lamp > lamp-‘date +%Y %m%d‘.sql

e mysql -u root -p lamp < lamp-20030212.sql

3.5 Client Software
3.5.1 mysql

=

flle Edt Yi=w Termenal Qo Help

The command line client provided with the MySQL distribution. Provides
many CLI creature comforts such as autocompletion, buffer history, and buffer
search.



3.5.2 phpMyAdmin

| i ] (| (T[]

T s e et fy

Manage databases and tables from your web browser. It requires PHP and
a webserver.



3.5.3 MySQL Control Center

|Enmmmbwm|!‘

I I B

T
=il
=2l A ekl N

= & iy Tyt Wi CmineE
s s | — —

g e rora AR
S alang

= P
| =lhwnp
ST abdan
wtata ]
-t
+ flrpaca
4 lraipeagmiin
i
iin
« BTalsm
|- NS Admurhatialiod
[ s Acronalrannn
P T LT

| /|
: e T Tt

3 o e} SELBCT * FRAOM gale

B Pt ataal) EXPLAN SELECT * FROAM 'Sfi
o Fecgreaif BHOW FIELDS FROW dali

A N S0 Dy

E

|

Ll

o
This is MySQL AB’s own graphical front-end for MySQL servers. It is full-

featured, free, and available in source or binary download for Linux or Windows
clients.




3.5.4 MysqlTool

-
| Rl
I danaai

Yet another web-based administration tool.

15 o B
LH opameer 3306
L3 i vend 1
=] Calwgares
Hads
Bma by {EA Cuis_frse
Sew_Frvsf [qrome Sl _rerersari-
Bewy 3 Crasin _free
Mg e g 34 Updsls _brsa
Cus_mrsgsh 430 Chect _free
W _iwty_jarepih 4384 DETITR Crasls_gprianr
ik _fragsh. 2540 Cormrmmi
Fakda
il =] 1un Ll R D A= Y
[ Cahmmzin Fi{l1] rH wds_rorawan =
C Cainpn bt BT L wER )
[ Dt Tl veg
i
Bl e | by e e - Lok o Comyw . Cm
Frarmassy i el
iy

This one relies on the Perl

CGI and DBI modules. It optionally supports encrypted connections via the

Crypt::Blowfish module.

4 Perl
4.1 Test CGI

We would first like to verify that a simple perl CGI will work from our applica-

tion directory.

e mkdir /var/www/html/lamp

Test script (test.cgi):

#!/usr/bin/perl
use strict;
use CGI;

my $cgi = new CGI;



print $cgi->header;
print $cgi->start_html;
foreach (keys %ENV) {

print "$_ $ENV{$_}<br>";
}
print $cgi->end_html;

e https://localhost/lamp/test.cgi

4.2 Installing Perl Modules

e http://search.cpan.org/CPAN /authors/id/S/SA/SAMTREGAR/HTML-
Template-2.6.tar.gz

o tar zxvf HTML-Template-2.6.tar.gz

e cd HTML-Template-2.6 && perl Makefile.pl && make && sudo make
install

4.3 HTML:: Template

The HTML::Template module is recommended for projects where the logic
(Perl) and content (HTML) need to be segregated. Examples of this would
include companies where the Web designers are not fluent back-end coders. A
normal CGI script is created, but it does not directly create the HTML output.
Instead, an HTML::Template object is created through the OO interface, and
parameters are passed onto the requested template file (*.tmpl, by convention)
via the param() object method. The only uncommon formatting you’ll notice
in the templates are the TMPL markup tags used to receive the passed values.
Example Tags:

<TMPL_VAR></TMPL_VAR>
<TMPL_LOOP></TMPL_LOOP>
<TMPL_IF>

<TMPL_ELSE>

</TMPL_IF>
<TMPL_UNLESS></TMPL_UNLESS>
<TMPL_INCLUDE></TMPL_INCLUDE>

While TMPL VAR allows for variable substitution, the remaining majority of
tags provide a control structure. TMPL LOOP, for example, allows for easy
creation of HTML tables. Simply pass in a reference to an array of hashes, and
HTML::Template handles the rest, creating the table rows (or columns) as you
define via HTML markup.

Sample Template:

<html>
<head>



<title><TMPL_VAR name="title"></title>
</head>

<body>

<h1><TMPL_VAR name="title"></h1>
<table>

<TMPL_IF contacts_loop>

<TMPL_LOOP name="contacts_loop">
<tr>
<td><TMPL_VAR name="name"></td>
<td><TMPL_VAR name="phone"></td>
</tr>
</TMPL_L0OOP>

</TMPL_IF>
</table>
</body>
</html>

And the sample CGI (index.cgi) which calls the template:

1
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:

#!/usr/bin/perl

use strict;
use DBI;
use HTML::Template;

my $title = "Phone Contacts";
my @contacts_loop;
my $contacts = get_contacts();

for my $key (keys %$contacts) {
my %temp_hash = (
name => $key,
phone => $contacts->{$key},
)3
push(@contacts_loop, \/temp_hash);
}
my $template = HTML: :Template->new(
filename => ’contacts.tmpl’,
die_on_bad_params => 0,
)
$template->param(
title => $title,
contacts_loop => \@contacts_loop
)3
print "Content-Type: text/html\n\n";
print $template->output;

10



28:
29: sub get_contacts {

30: my $dbh = DBI->connect("DBI:mysql:lamp:localhost","lampuser
31: || die $DBI::errstr;

32: my $select_query = "select * from data";

33: my $sth = $dbh->prepare($select_query) || die $dbh->errstr;
34: $sth->execute() || die $dbh->errstr;

35: my %data;

36: while (my $result = $sth->fetchrow_hashref) {

37: $data{$result->{name}} = $result->{phonel};

38: s

39: return \/data;

40: }

Line 1 calls the Perl interpreter.

Lines 3-5 require the strict pragma, and the DBI and HTML::Template
modules.

Lines 7-9 initialize 3 global variables. $contacts is a reference created by
the return value from the subroutine get contacts().

Lines 11-17 create an array @contacts_loop which contains a hash refer-
ence for each key/value pair returned from the database query.

Line 11 shows a dereference of $contacts to allow us to grab the keys from
the hash.

Lines 12-15 populate a temporary hash with the key/value pair.
Line 16 adds the new hash to the @contacts loop array.

Lines 18-21 create a new Template object $template, using the “con-
tacts.tmpl” file, and turning off the die_on_bad params'’debugging op-
tion.

Lines 22-25 call the param() method on the $template object to pass the
$title variable and a reference to an array of hashes @Qcontacts loop.

Line 26 prints the Content-Type header.
Line 27 sends the aggregated template to STDOUT.

Lines 29-40 define the subroutine get _contacts(), which is used to gather
the data from the database and return a hash reference.

Lines 30-31 create a database handle object (connection) to the “lamp”
database on localhost, using the configured username and password. Fail-
ure to connect will force a die() with the database error ($DBI::errstr).

107f set to 0 the module will let you call $template->param(param name => *value’) even
if ‘param_name’ doesn’t exist in the template body. Defaults to 1.

11

,"<pass>

Il)



e Line 32 creates a string $select query containing our SQL query.

e Line 33 creates a statement handle object. This is used to prepare our
SQL query $select query.

e Line 34 executes our prepared query.

e Line 35 initializes a new hash. This hash will be used to contain all contact
names and phone numbers retrieved from the database query.

e Lines 36-38 perform a control loop which gathers hash references to our
data “while” data is still available from the statement handle.

e Line 37 assigns a new key/value pair in the %data hash based on the
collected name/phone pair.

e Line 39 returns reference to the %data hash.

4.4 Testing

e Connect to https://localhost/lamp/ or https://localhost/lamp/index.cgi
to verify the script works.

4.5 Advanced Topics
4.5.1 Security

Although this presentation has not focused extensively on Internet security,
any developer planning or designing a web application should spend sufficient
time researching and resolving predictable points of weakness in all seven OSI
layers.!!

4.5.2 Sessions

The ability to keep state between invocations of the same CGI or pages in an
application is necessary for online commerce, communities, webmail, and much
more. Methods for handling this include hidden form parameters and cookies.
Most modern programming languages (Perl, PHP, Python) have modules avail-
able which assist the developer in maintain session state without dealing with
the granular details.

4.5.3 CPAN

We’ve touched briefly on the use of Perl modules to facilitate new applications.
The Comprehensive Perl Archive Network provides Perl developers with a re-
source to borrow and donate open-sourced Perl code.

U http:/ /www.randywanker.com/OSI/

12



5 Conclusion

LAMP configurations serve as excellent cost-conscious platforms for today’s web
applications. Corporate engineers and casual hackers alike can take advantage
of free software to build scalable, dynamic projects. Thanks to the open-source
licensing and development of the LAMP components, security and bug fixes are
often released much sooner than you would find in their proprietary counter-
parts. Combined, the facets of these projects have taken the Internet by storm,
and are unlikely to be unseated in the forseeable future.

References

[1] Red Hat Linux, http://www.redhat.com
[2] Apache, http://httpd.apache.org
[3] MySQL, http://www.mysql.com
[4] Perl, http://www.perl.org
[5] mod_SSL, http://www.modssl.org
[6] mod_perl, http://perl.apache.org
[7] HTML:: Template, http://html-template.sourceforge.net
[8] PHP, http://www.php.net
[9] Python, http://www.python.org
[10] netfilter/iptables, http://www.netfilter.org
[11] PerlMonks, http://www.perlmonks.org
[12] CPAN, http://www.cpan.org
[13] phpMyAdmin, http://www.phpmyadmin.net
[14] MySQL Control Center, http://www.mysql.com/downloads/mysglcc.html

[15] MysqlTool, http://www.dajoba.com/projects/mysqgltool/

13



